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Table 4. Cesium-oxygen distances (A) 

Cs-O(1) 3.226 (2) Cs-O(4 iv) 3.012 (2) 
- 0 ( 2  l) 3-008 (2) -0 (5  v) 3.113 (2) 
-0(2 ~) 3.019 (2) -0(5 vi) 3.116 (2) 
-0(3 ~) 3.321 (2) -0(6 ~H) 3.684 (2) 
-O(3 m) 3.234 (2) 

We thank R. D. Giauque and L. Y. Goda for the 
rubidium analysis; the potassium was analyzed by the 
Microchemical Analysis Laboratory of this University. 
This work was supported in part by the US Energy 
Research and Development Administration. 

Symmetry code 
(i) --½ + x, - ½  -- y,  2 --  z (iv) ½ -- x,  --y,  ½ + z 
(~) l--x, ½+y,~--z (v) x,y, 1 + z 
(iii) 1 -- x,  ½ + y ,  ½ -- z (vi) ½ -- x,  --y, ½ + z 

agreement indices. Thus the precision of this data set is 
not great enough to reveal any angular dependence of 

f f t ,  

The structure is nearly the same as that of 
ammonium hydrogen tartrate (van Bommel & Bijvoet, 
1958). Bond distances (Fig. 1) and angles (Table 3) of 
the bitartrate ion are identical within about five times 
the estimated standard deviations. The Cs ion has nine 
O neighbors (Table 4), eight of them approximately at 
the corners of a square antiprism, with the ninth, O(6), 
at a slightly greater distance capping one square face 
(Fig. 2). A similar arrangement occurs in the ammo- 
nium salt, but with shorter distances from N to its O 
neighbors. Hydrogen bonds from O(1)to O(6), 0 ( 3 ) t o  
O(6), and 0(4)  to 0(5)  are the same in the two salts, 
with corresponding O - O  distances 2.58, 2.76 and 
2.84 A in the Cs salt and 2.55, 2.74 and 2-80 A in the 
ammonium salt. 
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Minimizing the Variance in Densities Evaluated by Fourier Synthesis 
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Criteria for minimizing the variance in the Fourier synthesis of scattering densities are established. Their value 
has been confirmed by applying them to a study of bonding electron density by difference Fourier methods. 
The procedure has conceptual and practical advantages when compared with other types of weighting for 
the coefficients in a difference synthesis. It is expected that the minimum-variance criterion will improve the 
interpretability of some other classes of Fourier synthesis, such as those used in the study of protein 
structures. 

I n t r o d u c t i o n  

The techniques used for the study of the structure of 
materials by the analysis of diffraction data may be 
broadly classified as either Fourier-synthesis or least- 

squares methods. The latter are more convenient for 
quantitative work on a wide range of structural problems 
but there is revived interest in quantitative studies by 
Fourier methods because of applications in the charge- 
density and protein-structure fields. 
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The parameters determined by least squares are 
coefficients which define a model for the structure. The 
analysis is carried out in reciprocal space, and the 
statistical procedures for optimal use of the data are 
established. Fourier methods mainly involve imaging of 
structural information in direct space. The statistical 
treatment of the data gives rise to anomalies which do 
not appear in the least-squares analysis. The spaces for 
the alternative methods are related by a linear trans- 
formation, and their formal equivalence has been 
demonstrated (Cochran, 1948a,b). This suggests the 
possibility of evaluating Fourier syntheses in a more 
nearly optimal way. 

Analys is  

Our starting point is scattering theory based on the 
first Born approximation. The density of a component 
of the scattering material at a position r in a crystal is 
given by 

1 
p( r )=  ~, Z F(S) exp(--iS.r) (I) 

where V is the unit cell volume, S is a reciprocal-lattice 
vector, F(S) is the corresponding component of the 
structure factor. The summation extends over the whole 
of reciprocal space. We may write 

F(S) = F exp(h0 (2) 

where F is real and non-negative and the S dependence 
of F and st is assumed. By Friedel's Law 

F(S) = F*( -S)  (3) 

so that 

1 
p(r) = ~, Z F c o s ( S . r -  t0. (4) 

In an experimental study of scattering density we 
have measurements or estimates F e and % for F and tt 
respectively. By analogy with (4) an estimate of the 
density is given by 

Let 

and 

1 
Pc(r) = p- Z Fe c ° s ( S ' r - -  "e)" (5) 

F~ = F + 5F (6) 

Ct e = tt + 6it. (7) 

The exact values of 6F and 5tt are, or course, unknown. 
Our information is restricted to knowledge of their 
statistical behaviour. 

The distribution function for the cosine terms in 
equation (5) cannot in all cases be treated as random, 

since the Fourier components must combine to give a 
substantial positive contribution in the vicinity of a 
nuclear position. A statistical treatment thus relies on a 
random distribution for 61; and go. For the moment it is 
assumed that there is negligible correlation between the 
5F values and the phases of the cosine terms, then the 
variance in the electron density is uniform over the cell 
and is given by* 

1 
o2(p~) = ~ Z c72(F~) + F2 a2(a9 (8) 

where t72(Fe ) and t72(cte) a r e  the variance in F and a, i.e. 
the expectation values for (cSF) 2 and (6o) 2 respectively. 
Equation (8) describes the variance in the density when 
the measurements used in (5) are treated as equally 
reliable. This leads to well known anomalies. The ideal 
summation (1) extends over an infinite set of lattice 
points which in practice is approximated by a finite set. 
As the finite set is extended so aZ(Pe) extends, appar- 
ently without limit. This implies that for a Fourier map 
calculated from an infinite set of data points we should 
not be able to draw any conclusions about the structure! 

O p t i m u m  filtering 

It is well known that the use of filtering can improve 
the signal-to-noise ratio in Fourier analysis of experi- 
mental data. The methods are standard where there are 
known relations between the Fourier coefficients of the 
signal. This is not generally true for diffraction data, 
and a variety of filtering functions have been proposed. 
Some of these are based on ad hoc procedures, such as 
truncation of the data at some maximum I Sl obtained 
by trial. In others, the Fourier coefficients have been 
assigned weights appropriate to a least-squares deter- 
mination of structural parameters, but it has not been 
shown that this is an appropriate weighting for the 
calculation of scattering density. 

We define a modulated experimental density 

1 
PM(r) = p Z MFe c ° s ( S ' r - -  °e) (9) 

where M is a modulating function which we seek to 
optimize. 

We minimize a residual with the form of an estimate 
of the mean variance of the density in the unit cell 

B = (~2(pm)) v = ~. [PM(r) -- p(r)]2)dr. (10) 

* In deriving this expression we note that the products of the 
cosine terms average to zero. except for squared terms and those 
where the S vectors differ only in sign. 
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It is shown in the Appendix that this is equivalent to 
minimizing 

where 

1 
R : '~-'(I ( M  F e - F)l 2) (11) 

F e = F e exp (iae). (12) 

We now invoke the statistical behaviour of 5F and &t 
for the determination of M. A symmetrical distribution 
for 5a will be assumed, and this implies that M will be 
real, in which case 

1 
R= ~ E (MEF2e-- 2MFVeC°S(3tt) + F2)" (13) 

We now choose M, the optimum form for M, as a 
function with a fixed value for each ensemble average 
so that 

1 
(R)M=M = ~ E M Z ( F 2 ) -  2M(Vre cos(3~t)) + (V 2) 

and hence 

( t3R M=M ---- 2V -----z [M(F#) _ (FeF COS(fi(@ ] 

= 0  (14) 

for each ensemble. 
This is is our basic equation, which has a simple 

geometrical interpretation, since it may be expressed, in 
the complex plane, as 

(F  e. F)  
M -  - -  (15) 

(Fe. Fe) 

A problem arises in assessing the effect on the 
variance when there is an approximate functional 
relation between F e -- F and F. The relation between 
5F, 5~t and the phases of the cosine terms can no longer 
be treated as random. This has important consequences 
in practice because of the effect of errors in the scale of 
the F e. Let 5K/K be the relative error in the scale factor 
for the data. In a well-conducted experiment the effect 
of this error on the structure factors is small, and this is 
also true for the density in the bulk of the synthesis. In 
the vicinity of a nuclear position rj the density p(r)  may 
be very large. Although the corresponding error 
p(rj)(SK/K) due to the scale factor is relatively small, 
its value may still be large compared with a(pM). 

The size of the error may be estimated if o'2(K) is 
known; but, where the error function is dominated by a 
single large error of this type it is difficult to be sure that 
the requirements for validity of the central limit 
theorem (Cram~r, 1947) are satisfied. The densities at 
nuclear positions are correspondingly uncertain. 

A further difficulty arises because there are no ob- 
servations of F e for S(=lSl/4n) values greater than 
some maximum values Sma x determined by the experi- 
mental conditions. The effect is to convolute the density 
with the Fourier transform of a function which is unity 
for S < Sma x and zero elsewhere. Corrections for the 
termination of the Fourier series have been proposed 
(Cruickshank, 1949), but depend for their validity on 
the reliability of theoretical models for the structure. 

Finally, it must be noted that special problems arise 
for non-centrosymmetric structures where the phase 
information is derived from a model for the structure, 
and not from experiment. As is shown by Maslen 
(1968) the bias of the phases towards those of the 
model precludes the use of the corresponding densities 
for quantitative work. 

Variance for pu(r) 

From the relations given above, the variance in the 
filtered electron density may be written as the expec- 
tation value 

1 (Fe. F) 2 
a2[P~t (r)] = -~ E (F .  F ) - -  (16) 

(Fe. Ve) 

For those cases where 3F and 5tt are randomly dis- 
tributed the variance is again uniform over the cell and 
is given by 

aE(pm ) = Z a2(Fe) + F2a2(ae) 

{ [a2(Fe) + F2a2(,,e)] ) 
x 1 -- (Fe 2) . (17) 

Charge-density studies 

X-ray diffraction difference Fourier syntheses are 
important because the residue after subtracting a set of 
unbonded atom densities depicts the redistribution of 
electron density by chemical bonding and packing 
forces. However, the data for large S, which are neces- 
sary for accurate determination of nuclear positions 
and vibration amplitudes, contain relatively less infor- 
mation on the bonding electron density than the low- 
angle data. Furthermore the high-angle reflections are 
relatively less accurate because of reduced form factors 
and attenuation by the temperature factors. Conse- 
quently, maps based on a subset of the data with S less 
than some maximum are often more readily interpreted 
than those where high-angle data are included. Such 
truncation is rather arbitrary and the minimum- 
variance criterion provides an approach to the problem 
which is nearer to ideal. 
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We are concerned only with the centrosymmetric 
case, with phases restricted to 0 or n. F e becomes 
AF e = F o - Fc, where F o and F~ are observed and 
calculated structure factors respectively. F becomes 
AF = F - F c where F is the true structure factor. 
Equation (15) then has the form 

(AF e. AF) 
M =  (18) 

(AFe. AFe) 
Setting 

AF e = dE + ~AF (19) 

and assuming that ~AF is not correlated with F, we 
obtain 

(AFe. ~AF > (fiAF. fiAF) 
M = I -  = I - -  

<AFe'AFe) <AFe'AFe) (20) 

a2(Fe) 

((AFe)2) 

This is an expression for the optimum filtering func- 
tion as it applies to difference syntheses for centro- 
symmetric structures. In principle it may be applied 
with individual reflections as the statistical ensembles, 
provided more than one observation per reflection is 
available. From equation (19), with the assumptions 
used to derive equation (20), we have 

((AFe)2) = (AF) 2 + o'2(Fe). (21) 

Thus, M tends to unity for (AF) 2 ~ 0"2(Fe) and to zero 
for (AF) 2 ~  0. Its use in practice is open to two objec- 
tions. The first of these is the sensitivity of the denomi- 
nator in the second term to noise, in the critical low 
(AF) 2 region. The second difficulty is that of finding an 
analytical description of the effect of the filtering 
function on the density. 

The first of these problems may be avoided if we use 
a biased estimator for ((AFe) 2) by substituting ((AFe) 2) 
for (AF) 2, which is unknown, in the right-hand side of 
(21), yielding 

a2(Fe) 
M =  l - -  (22) 

(AFe)2) + a2(Fe) 

This obviously gives values which are too large, 
especially for low values of ((AFe)2). Its virtue, apart 
from its satisfactory asymptotic behaviour, is that it 
avoids generating absurd negative values of M because 
of noise for low ((AFe)2) reflections. 

Z-square weighting 

To obtain an unbiased but less noisy estimate we note 
that if the a 2 values are reliable then the reduced 
z-square statistic 

Z 2 -- ((AFe)2) 
(a2(Pe)),  (23) 

which ideally is not less than unity, is less noisy if the 
averages are taken over more than one reflection. Since 
the same M value applies to all members of the 
ensemble the averages should be taken over reflections 
with similar z-square values. 

We have then 

1 
M =  1 - - -  (24) 

Z 2 

In a statistical sense this function is a measure of the 
information content of the data not accounted for by 
the model used to calculate the structure factors. It is 
effectively a signal-to-noise ratio, decreasing asymp- 
totically to zero as the limit of resolution of the data, in 
the least-squares sense, is approached. 

When the F C are structure factors for the unbonded- 
atoms model 1 - (1/Z 2) is a measure of the information 
on bonding density contained in the data. We expect it 
to vary with S as the contribution to bonding density 
varies with S, i.e. it will be near unity for low angles, 
and tend to zero for high angles where the atomic 
approximation is more reliable. 

The use of the function 

1 
M(S)  = 1 - ~ (S) (25) 

Z" 

automatically provides a logical approach both to the 
choice of the experimental limit for data collection and 
to the calculation of standard deviations. Equation (17) 
becomes 

1 
G2(ApM) = ~ Z MO'2(Fe)" (26) 

It should be noted that this allows for the effect of M 
modulating the signal as well as the noise in the experi- 
ment. 

The maximum value of S in the data collection 
should be large enough for M(S) to approach its 
asymptotic limit, a2(ApM) will simultaneously approach 
its asymptotic value. Data collected beyond this point 
will give no further contribution to the difference 
density and no increase in its standard deviation. 

If a satisfactory model for the charge-density map 
could be devised z2(S) would be one and M(S)  zero for 
the full angle range. This would yield a flat difference 
map, instead of the map of noise obtained in the usual 
approach to difference-map evaluation. 

The representation of M as a function of S has a 
further advantage. The signal in the difference map is 
given by the convolution of the Fourier transform of 
M(S) with the true difference density. The signal in a 
conventional difference map is similar except that M(S)  
is replaced by a step function which is unity for S less 
than the data cut-off, and zero elsewhere. 
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Example 

A set of accurate X-ray data has recently been collected 
for copper sulphate pentahydrate C u S O 4 . 5 H 2 0  , for 
which neutron diffraction structural parameters have 
recently been determined (Bacon & Titterton, 1975). A 
best set of parameters, based on X-ray high-angle 
values for the heavier atoms and neutron values for the 
lighter atoms, has been derived. The experimental cut- 
off for the X-ray data is Sma X = 1.07 A -~. z2(S) ranges 
from 580 for the low-angle data to 1.47 for the outer 
reflections. M, calculated for intervals of S specified in 
an agreement analysis, is shown in Fig. 1. Difference 
syntheses for a section through the plane of one of the 
two crystallographically independent Cu atoms and its 
neighbouring water molecules are shown in Fig. 2. 

The section of the density corresponding to the 
optimum form of M(S) [described by equation (25) 
and illustrated in Fig. 1] is shown in Fig. 2(a). This map 
resembles Fig. 2(b), the map with a data set truncated 
a t  Sma x = 0-9 A -l. This has a total weight fo Alia2 dS 
which is very close to that of the optimum filtering 
function. Fig. 2(c) is the conventional difference syn- 
thesis. Fig. 2(d) was evaluated with data modulated by 
truncation a t  Sma x : 0.7 A-L It is obvious from 
inspection that the Fig. 2(a) map is a good compromise 
between resolution and sensitivity to noise. 

Fig. 2(e) shows the difference map evaluated with M 
in the near-optimum form for individual reflections 
given by equation (22). Another synthesis was evalu- 
ated applying the expression 

<(TZ(Fe)>S 
M"(S)  = 1 -  (27) 

<(ZJFe) 2 + o2(Fe)>S 

This is similar to equation (22) but the ensembles consist 
of all reflections in given intervals of S instead of 
individual reflections. This synthesis is not shown 
because it is virtually identical with Fig. 2(e). This con- 
firms that taking ensembles as intervals of S is a satis- 
factory method of weighting difference densities for 
charge-density studies. 

l " O ' m m  

M 

0 5  

0 ' 2  

1 

" 1 ~ , 

]--~ 

0 ~  ....................... ~ 6  ................................ 0 8  ................... 1:0 

Sin®/ ;~  ~-I 

Fig. 1. The minimum-variance filtering function for X-ray data 
on copper sulphate pentahydrate. 

The standard deviations in the electron density 
evaluated with equation (8) for Fig. 2(e) and equation 
(26) for Fig. 2(a) are 0.099 and 0"066 e A -3 respec- 
tively. There is a small reduction in height of the 
sharper features near the nuclear positions in the filtered 
map, but the features expected for the bonding electron 
density are defined to a higher level of significance. 
Furthermore, in so far as M(S) shown in Fig. 1 can be 
said to be approaching its asymptotic limit, 02(ApM ) 
approaches a well-defined value determined by the 
accuracy of the observations rather than the data cut- 
off. 

Diffraction ripple 

In addition to changing the resolution, modulation of 
the density may produce artefacts, in the form of ripple 
surrounding prominent features. It is desirable for ease 
of interpretation that this diffraction ripple should be 
small compared with the standard deviations. The mag- 
nitude of the ripple is determined by the shape of the 
Fourier transform of the modulating function. This is 
shown in Fig. 3 for (a) the optimum filtering function 
and (b), (c), (d) data truncated without further modu- 
lation at 0-9 A-~, at the experimental cut-off ( 1.07 A- ~), 
and at S = 0.7 A -1 respectively. The use of a logarith- 
mic scale to enhance the structure of the ripple should 
be noted. The ripple is lower, relative to the height of 
the central maximum, for M(S) than for the truncated 
functions. 

Conclusions 

The minimum-variance filtering function has concep- 
tual and practical advantages in optimizing the 
difference syntheses for charge-density studies. 

The usefulness of the minimum variance criterion will 
vary according to the nature of the problem, but there 
is an important case with a strong similarity to those in 
charge-density work. 

In protein-structure analysis the weak reflections, 
which predominate at high Bragg angles, are determined 
with lower precision than the medium and high- 
intensity data, which predominate at low angles. 
Optimization of the Fourier maps is important in 
differentiating between functional groups with similar 
geometries, and in the refinement of large protein 
structures where least-squares methods are compu- 
tationally prohibitive. It is probable that minimum- 
variance methods could usefully be applied. 

We gratefully acknowledge the contributions of 
Dr A. H. White in collecting the intensity data for 
copper sulphate and of Professor G. E. Bacon who 
kindly provided advance information on the neutron 
structural parameters. 
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Fig. 2. Section of the X-ray difference density for copper sulphate pentahydrate through a Cu and four water oxygen atoms evaluated (a) 
with the optimum filtering function, (b) with Sma x = 0.9 A -~, (c) with the full data (Sma x = 1.07 A-I). (d) with Sma x = 0-7/k -t and (e) 
with M as in equation (22) in the text. Contour interval 0.1 e A -3. 
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The variance of the filtered density can then be 
written as 

0"2[pm(r)] = ([pe(r) -- P(r)] 2) 

{[' = ~.. E e x p ( - - i S ' r ) ( M F e -  F) . (A.3) 

Terms in the square of the indicated sum in the last 
expression can be separated into two classes: (i) 
products containing the factors exp(iS.r) and 
exp(- iS . r ) ,  (ii) products containing the factors 
exp(iS.r) and exp(iS' .r) ,  where S' 4: - S .  With this in 
mind and noting that Friedel's Law requires that F(--S) 
= F*(S) and M ( -S)  Fe(--S) = M*(S) F*(S), (A.3) can 
be written 

1 
cratPM(r)]-~-~ (~_~t(MF e -- F)[ 2) 

1 
+ ~-3 ( ~ '  exp[i(S + S'). r] ( M F  e - F) 

x (M'  Fe ' - -  F ' ) )  (A.4) 

Fig. 3. The radial dependence of the Fourier transforms for (a) the 
optimum filtering function, (b) a step function with Sma x = 
0.9 A -l, (c) step-function with Sma x = 1.07 A-' and (d) 
Sma x = 0.7/k -l. The logarithmic scale should be noted. 
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where ~ '  means a restricted sum over all S' 4: - S  and 
F' = F(S') etc. The  second expression in (A.4) is a 
superposition of periodic functions with different 
wavelengths. If the summation extends over a suffi- 
ciently large region of reciprocal space, this term will be 
negligible in comparison with the first. The variance 
therefore becomes 

1 
ty2[pm(r)] : ~-'5( i ( M F e - -  F)i2) • (A .5) 

A P P E N D I X  

The true density and filtered observed density are de- 
fined respectively by 

1 
p(r) = ~, ~ F exp( - iS . r )  (A.1) 

and 
1 

pm(r) =~, Z M F e e x p ( - i S ' r ) "  (A.2) 
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